# inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Rubidium hexafluoridoiridate(IV)

### Anton I. Smolentsev,<sup>a</sup>\* Alexander I. Gubanov,<sup>a,b</sup> Dmitry Yu. Naumov<sup>a</sup> and Andrey M. Danilenko<sup>a</sup>

<sup>a</sup>Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Akademician Lavrentiev Prospekt 3, Novosibirsk 90, 630090, Russian Federation, and <sup>b</sup>Novosibirsk State University, Pirogova Street 2, Novosibirsk 90, 630090, Russian Federation

Correspondence e-mail: smolentsev@ngs.ru

Received 2 November 2007; accepted 16 November 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (lr–F) = 0.002 Å; R factor = 0.009; wR factor = 0.024; data-to-parameter ratio = 13.9.

 $Rb_2[IrF_6]$  possesses a framework structure constructed from  $Rb^+$  cations and  $[IrF_6]^{2-}$  complex anions. The cation is 12-coordinated by F atoms, forming a slightly distorted anticuboctahedron; the anion has the shape of an almost ideal octahedron. Rb, Ir and F atoms are located on special positions of 3m,  $\overline{3m}$  and m symmetry, respectively.

#### **Related literature**

The title compound was first characterized by X-ray powder diffraction (Babel, 1967). It is isomorphous with the potassium (K<sub>2</sub>[IrF<sub>6</sub>]; Fitz *et al.*, 2002) and caesium analogues (Cs<sub>2</sub>[IrF<sub>6</sub>]; Smolentsev, Gubanov, Naumov & Danilenko, 2007). The alkaline earth metal hexafluoridoiridates Ca[IrF<sub>6</sub>]·2H<sub>2</sub>O, Sr[IrF<sub>6</sub>]·2H<sub>2</sub>O and Ba[IrF<sub>6</sub>] were recently reported (Smolentsev, Gubanov & Danilenko, 2007).

#### **Experimental**

Crystal data

 $\begin{array}{l} {\rm Rb}_2[{\rm Ir}F_6] \\ M_r = 477.14 \\ {\rm Trigonal}, \ P\overline{3}m1 \\ a = 5.9718 \ (2) \ {\rm \AA} \\ c = 4.7939 \ (2) \ {\rm \AA} \\ V = 148.06 \ (1) \ {\rm \AA}^3 \end{array}$ 

Z = 1 Mo K $\alpha$  radiation  $\mu$  = 38.91 mm<sup>-1</sup> T = 296 (2) K 0.14 × 0.06 × 0.06 mm

#### Data collection

Bruker-Nonius X8 APEXII

diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2004)  $T_{min} = 0.074, T_{max} = 0.091$ (expected range = 0.079–0.097)

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.009 & 13 \text{ parameters} \\ wR(F^2) &= 0.024 & \Delta\rho_{\max} &= 0.60 \text{ e } \text{\AA}^{-3} \\ S &= 1.21 & \Delta\rho_{\min} &= -1.16 \text{ e } \text{\AA}^{-3} \\ 181 \text{ reflections} & \end{split}$$

Table 1

Selected bond lengths (Å).

| $    Ir1-F1  Rb1-F1^i $ | 1.9328 (19) | Rb1–F1               | 3.0101 (3) |
|-------------------------|-------------|----------------------|------------|
|                         | 2.9511 (19) | Rb1–F1 <sup>ii</sup> | 3.080 (2)  |
|                         |             |                      |            |

1328 measured reflections

 $R_{\rm int} = 0.018$ 

181 independent reflections

180 reflections with  $I > 2\sigma(I)$ 

Symmetry codes: (i) y, -x + y, -z; (ii) y, -x + y, -z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2004); program(s) used to refine structure: *SHELXTL*; molecular graphics: *BS* (Ozawa & Kang, 2004) and *POV-RAY* (Cason, 2002); software used to prepare material for publication: *SHELXTL*.

The authors thank Dr Natalia V. Kuratieva for assistance during preparation of the article.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2039).

#### References

- Babel, D. (1967). Structure and Bonding, Vol. 3, pp. 1–87. Berlin, Heidelberg, New York: Springer-Verlag.
- Bruker (2004). APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cason, C. J. (2002). POV-RAY for Windows. Version 3.5. http://www.povray.org.
- Fitz, H., Müller, B. G., Graudejus, O. & Bartlett, N. (2002). Z. Anorg. Allg. Chem. 628, 133–137.
- Ozawa, T. C. & Kang, S. J. (2004). Balls & Sticks (BS). Version 1.51. http:// www.softbug.com/toycrate/bs.
- Smolentsev, A. I., Gubanov, A. I. & Danilenko, A. M. (2007). *Acta Cryst.* C63, i99–i101.
- Smolentsev, A. I., Gubanov, A. I., Naumov, D. Yu. & Danilenko, A. M. (2007). Acta Cryst. E63, i201.

supplementary materials

#### Acta Cryst. (2007). E63, i200 [doi:10.1107/S1600536807059995]

# Rubidium hexafluoridoiridate(IV)

# A. I. Smolentsev, A. I. Gubanov, D. Y. Naumov and A. M. Danilenko

#### Comment

In  $Rb_2[IrF_6]$ , the  $Rb^+$  cation is coordinated to twelve F atoms belonging to six anions, forming a slightly distorted anticuboctahedron. Each anion, in the form of a nearly ideal octahedron, interconnects twelve cations (Fig. 1). The Rb–F distances have slightly different values. Anticuboctahedra share all their rectangular faces and two triangular faces with each other, and share three other triangular faces with octahedra, giving rise to the framework structure (Fig. 2).

#### **Experimental**

 $Rb_2CO_3$  was reacted with an aqueous solution of  $H_2[IrF_6]$  acid. Subsequent slow evaporation at room temperature yielded light-pink crystals in the form of needles or hexagonal plates of the title compound. The precursor,  $H_2[IrF_6]$ , was prepared as described in Smolentsev, Gubanov & Danilenko, (2007).

#### Refinement

The maximum peak and deepest hole are located 0.84 Å and 0.81 Å, both from Ir1.

#### **Figures**



Fig. 1. A fragment of the  $Rb_2[IrF_6]$  structure showing the complex anion surrounded by the cations. Displacement ellipsoids are drawn at the 50% probability level.



Fig. 2. Packing diagram for Rb<sub>2</sub>[IrF<sub>6</sub>], viewed in perspective, with Rb-centered anticuboctahedra (orange) and Ir-centered octahedra (purple).

# Rubidium hexafluoridoiridate(IV)

| Crystal data                        |                                                 |
|-------------------------------------|-------------------------------------------------|
| Rb <sub>2</sub> [IrF <sub>6</sub> ] | <i>Z</i> = 1                                    |
| $M_r = 477.14$                      | $F_{000} = 205$                                 |
| Trigonal, $P\overline{3}m1$         | $D_{\rm x} = 5.351 {\rm ~Mg~m}^{-3}$            |
| Hall symbol: -P 3 2"                | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| <i>a</i> = 5.9718 (2) Å             | Cell parameters from 1219 reflections           |
| <i>b</i> = 5.9718 (2) Å             | $\theta = 3.9 - 29.7^{\circ}$                   |
| c = 4.7939 (2) Å                    | $\mu = 38.91 \text{ mm}^{-1}$                   |
| $\alpha = 90^{\circ}$               | T = 296 (2)  K                                  |
| $\beta = 90^{\circ}$                | Needle, light-pink                              |
| $\gamma = 120^{\circ}$              | $0.14\times0.06\times0.06\ mm$                  |
| $V = 148.057 (9) \text{ Å}^3$       |                                                 |

#### Data collection

| Bruker–Nonius X8 APEX CCD area-detector diffractometer      | 181 independent reflections           |
|-------------------------------------------------------------|---------------------------------------|
| Radiation source: fine-focus sealed tube                    | 180 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.018$                 |
| Detector resolution: 25 pixels mm <sup>-1</sup>             | $\theta_{\text{max}} = 29.9^{\circ}$  |
| T = 296(2)  K                                               | $\theta_{\min} = 3.9^{\circ}$         |
| φ scans                                                     | $h = -8 \rightarrow 8$                |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2004) | $k = -8 \rightarrow 8$                |
| $T_{\min} = 0.074, \ T_{\max} = 0.091$                      | $l = -6 \rightarrow 3$                |
| 1328 measured reflections                                   |                                       |

## Refinement

| Refinement on F |
|-----------------|
|-----------------|

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.009$  $wR(F^2) = 0.024$ S = 1.21

181 reflections

13 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0105P)^{2} + 0.2201P]$ where  $P = (F_{o}^{2} + 2F_{c}^{2})/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.60 \text{ e } \text{Å}^{-3}$  $\Delta\rho_{min} = -1.16 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL97,  $\text{Fc}^{*}=\text{kFc}[1+0.001\text{xFc}^{2}\lambda^{3}/\sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.029 (2)

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | у          | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|--------------|------------|--------------|-------------------------------|
| Ir1 | 0.0000       | 0.0000     | 0.5000       | 0.01235 (12)                  |
| Rb1 | 0.6667       | 0.3333     | 0.20338 (12) | 0.01942 (13)                  |
| F1  | 0.15652 (18) | 0.3130 (4) | 0.2798 (4)   | 0.0224 (4)                    |

### Atomic displacement parameters $(Å^2)$

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$    | $U^{13}$   | $U^{23}$   |
|-----|--------------|--------------|--------------|-------------|------------|------------|
| Ir1 | 0.01143 (13) | 0.01143 (13) | 0.01420 (16) | 0.00571 (7) | 0.000      | 0.000      |
| Rb1 | 0.01815 (17) | 0.01815 (17) | 0.0219 (2)   | 0.00908 (8) | 0.000      | 0.000      |
| F1  | 0.0230 (7)   | 0.0175 (9)   | 0.0249 (8)   | 0.0088 (4)  | 0.0032 (4) | 0.0065 (7) |

## *Geometric parameters (Å, °)*

| 1.9328 (19) | Rb1—F1 <sup>xi</sup>                                                                                                                                                                                   | 3.0101 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.9328 (19) | Rb1—F1 <sup>iii</sup>                                                                                                                                                                                  | 3.0101 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.9328 (19) | Rb1—F1 <sup>xii</sup>                                                                                                                                                                                  | 3.0101 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.9328 (19) | Rb1—F1                                                                                                                                                                                                 | 3.0101 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.9328 (19) | Rb1—F1 <sup>xiii</sup>                                                                                                                                                                                 | 3.080 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.9328 (19) | Rb1—F1 <sup>xiv</sup>                                                                                                                                                                                  | 3.080 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.9511 (19) | Rb1—F1 <sup>ii</sup>                                                                                                                                                                                   | 3.080 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.9511 (19) | F1—Rb1 <sup>xv</sup>                                                                                                                                                                                   | 2.9511 (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.9511 (19) | F1—Rb1 <sup>xvi</sup>                                                                                                                                                                                  | 3.0101 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3.0101 (3)  | F1—Rb1 <sup>xvii</sup>                                                                                                                                                                                 | 3.080 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.0101 (3)  |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 180.00 (10) | F1 <sup>ix</sup> —Rb1—F1                                                                                                                                                                               | 165.46 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 93.01 (8)   | F1 <sup>x</sup> —Rb1—F1                                                                                                                                                                                | 118.542 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 86.99 (8)   | F1 <sup>xi</sup> —Rb1—F1                                                                                                                                                                               | 118.542 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 86.99 (8)   | F1 <sup>iii</sup> —Rb1—F1                                                                                                                                                                              | 55.52 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 93.01 (8)   | F1 <sup>xii</sup> —Rb1—F1                                                                                                                                                                              | 63.49 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 1.9328 (19)<br>1.9328 (19)<br>1.9328 (19)<br>1.9328 (19)<br>1.9328 (19)<br>1.9328 (19)<br>2.9511 (19)<br>2.9511 (19)<br>3.0101 (3)<br>3.0101 (3)<br>180.00 (10)<br>93.01 (8)<br>86.99 (8)<br>93.01 (8) | $1.9328(19)$ $Rb1-F1^{xi}$ $1.9328(19)$ $Rb1-F1^{iii}$ $1.9328(19)$ $Rb1-F1^{xii}$ $1.9328(19)$ $Rb1-F1$ $1.9328(19)$ $Rb1-F1^{xiii}$ $1.9328(19)$ $Rb1-F1^{xiii}$ $1.9328(19)$ $Rb1-F1^{xiii}$ $2.9511(19)$ $Rb1-F1^{xii}$ $2.9511(19)$ $F1-Rb1^{xvi}$ $2.9511(19)$ $F1-Rb1^{xvi}$ $3.0101(3)$ $F1-Rb1^{xvii}$ $3.0101(3)$ $F1^{xi}-Rb1-F1$ $93.01(8)$ $F1^{xi}-Rb1-F1$ $86.99(8)$ $F1^{xi}-Rb1-F1$ $93.01(8)$ $F1^{xii}-Rb1-F1$ $93.01(8)$ $F1^{xii}-Rb1-F1$ |

| $F1^{iii}$ —Ir1— $F1^{iv}$                | 180.0        | F1 <sup>vi</sup> —Rb1—F1 <sup>xiii</sup>   | 105.27 (6)  |
|-------------------------------------------|--------------|--------------------------------------------|-------------|
| F1 <sup>i</sup> —Ir1—F1                   | 93.01 (8)    | F1 <sup>vii</sup> —Rb1—F1 <sup>xiii</sup>  | 144.63 (2)  |
| F1 <sup>ii</sup> —Ir1—F1                  | 86.99 (8)    | F1 <sup>viii</sup> —Rb1—F1 <sup>xiii</sup> | 144.63 (2)  |
| F1 <sup>iii</sup> —Ir1—F1                 | 93.01 (8)    | F1 <sup>ix</sup> —Rb1—F1 <sup>xiii</sup>   | 51.80 (6)   |
| F1 <sup>iv</sup> —Ir1—F1                  | 86.99 (8)    | F1 <sup>x</sup> —Rb1—F1 <sup>xiii</sup>    | 51.80 (6)   |
| $F1^{i}$ —Ir1— $F1^{v}$                   | 86.99 (8)    | F1 <sup>xi</sup> —Rb1—F1 <sup>xiii</sup>   | 85.57 (4)   |
| $F1^{ii}$ —Ir1— $F1^{v}$                  | 93.01 (8)    | F1 <sup>iii</sup> —Rb1—F1 <sup>xiii</sup>  | 85.57 (4)   |
| F1 <sup>iii</sup> —Ir1—F1 <sup>v</sup>    | 86.99 (8)    | F1 <sup>xii</sup> —Rb1—F1 <sup>xiii</sup>  | 113.70 (3)  |
| $F1^{iv}$ —Ir1— $F1^{v}$                  | 93.01 (8)    | F1—Rb1—F1 <sup>xiii</sup>                  | 113.70 (3)  |
| F1—Ir1—F1 <sup>v</sup>                    | 180.00 (9)   | F1 <sup>vi</sup> —Rb1—F1 <sup>xiv</sup>    | 144.63 (2)  |
| F1 <sup>vi</sup> —Rb1—F1 <sup>vii</sup>   | 64.92 (6)    | F1 <sup>vii</sup> —Rb1—F1 <sup>xiv</sup>   | 144.63 (2)  |
| F1 <sup>vi</sup> —Rb1—F1 <sup>viii</sup>  | 64.92 (6)    | F1 <sup>viii</sup> —Rb1—F1 <sup>xiv</sup>  | 105.27 (6)  |
| F1 <sup>vii</sup> —Rb1—F1 <sup>viii</sup> | 64.92 (6)    | F1 <sup>ix</sup> —Rb1—F1 <sup>xiv</sup>    | 85.57 (4)   |
| F1 <sup>vi</sup> —Rb1—F1 <sup>ix</sup>    | 63.40 (7)    | F1 <sup>x</sup> —Rb1—F1 <sup>xiv</sup>     | 113.70 (3)  |
| F1 <sup>vii</sup> —Rb1—F1 <sup>ix</sup>   | 128.10 (2)   | F1 <sup>xi</sup> —Rb1—F1 <sup>xiv</sup>    | 51.80 (6)   |
| F1 <sup>viii</sup> —Rb1—F1 <sup>ix</sup>  | 96.72 (4)    | F1 <sup>iii</sup> —Rb1—F1 <sup>xiv</sup>   | 113.70 (3)  |
| F1 <sup>vi</sup> —Rb1—F1 <sup>x</sup>     | 63.40 (7)    | F1 <sup>xii</sup> —Rb1—F1 <sup>xiv</sup>   | 51.80 (6)   |
| F1 <sup>vii</sup> —Rb1—F1 <sup>x</sup>    | 96.72 (4)    | F1—Rb1—F1 <sup>xiv</sup>                   | 85.57 (4)   |
| F1 <sup>viii</sup> —Rb1—F1 <sup>x</sup>   | 128.10 (2)   | F1 <sup>xiii</sup> —Rb1—F1 <sup>xiv</sup>  | 61.90 (6)   |
| F1 <sup>ix</sup> —Rb1—F1 <sup>x</sup>     | 55.52 (7)    | F1 <sup>vi</sup> —Rb1—F1 <sup>ii</sup>     | 144.63 (2)  |
| F1 <sup>vi</sup> —Rb1—F1 <sup>xi</sup>    | 96.72 (4)    | F1 <sup>vii</sup> —Rb1—F1 <sup>ii</sup>    | 105.27 (6)  |
| F1 <sup>vii</sup> —Rb1—F1 <sup>xi</sup>   | 128.10 (2)   | F1 <sup>viii</sup> —Rb1—F1 <sup>ii</sup>   | 144.63 (2)  |
| F1 <sup>viii</sup> —Rb1—F1 <sup>xi</sup>  | 63.40 (7)    | F1 <sup>ix</sup> —Rb1—F1 <sup>ii</sup>     | 113.70 (3)  |
| F1 <sup>ix</sup> —Rb1—F1 <sup>xi</sup>    | 63.49 (7)    | F1 <sup>x</sup> —Rb1—F1 <sup>ii</sup>      | 85.57 (4)   |
| F1 <sup>x</sup> —Rb1—F1 <sup>xi</sup>     | 118.542 (16) | F1 <sup>xi</sup> —Rb1—F1 <sup>ii</sup>     | 113.70 (3)  |
| F1 <sup>vi</sup> —Rb1—F1 <sup>iii</sup>   | 96.72 (4)    | F1 <sup>iii</sup> —Rb1—F1 <sup>ii</sup>    | 51.80 (6)   |
| F1 <sup>vii</sup> —Rb1—F1 <sup>iii</sup>  | 63.40 (7)    | F1 <sup>xii</sup> —Rb1—F1 <sup>ii</sup>    | 85.57 (4)   |
| F1 <sup>viii</sup> —Rb1—F1 <sup>iii</sup> | 128.10 (2)   | F1—Rb1—F1 <sup>ii</sup>                    | 51.80 (6)   |
| F1 <sup>ix</sup> —Rb1—F1 <sup>iii</sup>   | 118.542 (16) | F1 <sup>xiii</sup> —Rb1—F1 <sup>ii</sup>   | 61.90 (6)   |
| F1 <sup>x</sup> —Rb1—F1 <sup>iii</sup>    | 63.49 (7)    | F1 <sup>xiv</sup> —Rb1—F1 <sup>ii</sup>    | 61.90 (6)   |
| F1 <sup>xi</sup> —Rb1—F1 <sup>iii</sup>   | 165.46 (7)   | Ir1—F1—Rb1 <sup>xv</sup>                   | 161.40 (10) |
| F1 <sup>vi</sup> —Rb1—F1 <sup>xii</sup>   | 128.10 (2)   | Ir1—F1—Rb1 <sup>xvi</sup>                  | 95.49 (4)   |
| F1 <sup>vii</sup> —Rb1—F1 <sup>xii</sup>  | 96.72 (4)    | Rb1 <sup>xv</sup> —F1—Rb1 <sup>xvi</sup>   | 83.28 (4)   |
| F1 <sup>viii</sup> —Rb1—F1 <sup>xii</sup> | 63.40 (7)    | Ir1—F1—Rb1                                 | 95.49 (4)   |
| F1 <sup>ix</sup> —Rb1—F1 <sup>xii</sup>   | 118.542 (16) | Rb1 <sup>xv</sup> —F1—Rb1                  | 83.28 (4)   |
| F1 <sup>x</sup> —Rb1—F1 <sup>xii</sup>    | 165.46 (7)   | Rb1 <sup>xvi</sup> —F1—Rb1                 | 165.46 (7)  |
| F1 <sup>xi</sup> —Rb1—F1 <sup>xii</sup>   | 55.52 (7)    | Ir1—F1—Rb1 <sup>xvii</sup>                 | 93.32 (7)   |
| F1 <sup>iii</sup> —Rb1—F1 <sup>xii</sup>  | 118.542 (16) | Rb1 <sup>xv</sup> —F1—Rb1 <sup>xvii</sup>  | 105.27 (6)  |
| F1 <sup>vi</sup> —Rb1—F1                  | 128.10 (2)   | Rb1 <sup>xvi</sup> —F1—Rb1 <sup>xvii</sup> | 94.43 (4)   |
| F1 <sup>vii</sup> —Rb1—F1                 | 63.40 (7)    | Rb1—F1—Rb1 <sup>xvii</sup>                 | 94.43 (4)   |
| F1 <sup>viii</sup> —Rb1—F1                | 96.72 (4)    |                                            |             |

supplementary materials

Symmetry codes: (i) -y, x-y, z; (ii) y, -x+y, -z+1; (iii) -x+y, -x, z; (iv) x-y, x, -z+1; (v) -x, -y, -z+1; (vi) x-y+1, x, -z; (vii) y, -x+y, -z; (viii) -x+1, -y+1, -z; (ix) x+1, y, z; (x) -y+1, x-y, z; (xi) -x+1, -x+1, z; (xii) -y+1, x-y+1, z; (xiii) x-y+1, x, -z+1; (xiv) -x+1, -y+1, -z+1; (xv) x-y, -y+1, -z+1; (xv) -x+1, -z+1; (xv) -x+1; -z+1; -z+1; (xv) -x+1; -z+1; (xv) -x+1; -z+1; -z+1; -z+1; (xv) -x+1; -z+1; -





Fig. 2